

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДВНЗ «КРИВОРІЗЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ»

ЦИКЛ НАУКОВИХ ПРАЦЬ МОРКУН Наталі Володимирівни та КОВАЛЬ Світлани Станіславівни

за темою

«Автоматизація процесів управління ресурсномістких виробництв»

висунутої на здобуття премії Президента України для молодих вчених

Кривий Ріг — 2017

Наукова новизна

1. Уперше запропоновано метод ідентифікації нелінійних динамічних об'єктів збагачувального виробництва на основі просторово-часової моделі Вольтерра, який відрізняється від наявних тим, що для підвищення робастності моделі Вольтерра до шумів здійснене її проеціювання на набір ортонормованих базисних функцій Лагерра, а для зниження розмірності моделі використано метод дифузійних карт, при цьому помилка Семмона дорівнює 2,6%.

2. Удосконалено метод автоматичного зосередженого керування окремими параметрами процесу збагачення залізної руди в умовах нестаціонарності й змінності статичних і динамічних параметрів об'єкта, який відрізняється від наявних тим, що для досягнення робастної стійкості і якості при формуванні керування використано структуроване сингулярне значення, а зниження порядку регулятора виконано із застосуванням Ганкелевої норми, при цьому середньоквадратична помилка щодо базового регулятора становить 2,7%.

Наукова новизна

3. Розроблено метод автоматизації процесів керування нелінійними динамічними об'єктами збагачувального виробництва, який відрізняється від наявних тим, що технологічна лінія збагачення представлена як структура із зосередженими вхідними впливами й розподіленим по всій технологічній лінії виходом — функцією розподілу вмісту заліза по класах крупності часток твердої фази рудної пульпи, що дозволило перерозподілити навантаження між стадіями збагачення і знизити витрати електроенергії на 3,5%.

4. Розроблено метод оцінювання функції розподілу корисного компонента по класах крупності часток подрібненої руди в потоці пульпи на основі вимірювання параметрів процесу поширення високочастотних і низькочастотних ультразвукових хвиль, а також гамма-випромінювання, який відрізняється від наявних тим, що в процесі вимірювання здійснюють зміщення часток подрібненої руди певної крупності та густини в область вимірювання шляхом впливу на пульпу високоенергетичним ультразвуком, що дозволяє знизити похибку оцінювання в середньоквадратичному відхиленні до 0,76%.

5. Удосконалено метод розпізнавання мінералого-технологічних різновидів залізної руди в процесі керування технологічною лінією збагачення на основі оцінок характеристик твердої фази залізорудної пульпи, який відрізняється від наявних тим, що приналежність збагачуваної сировини до мінералого-технологічного різновиду визначається шляхом нечіткої кластеризації оцінок крупності та густини часток подрібненої руди у процесі їх перерозподілу в контрольованому об'ємі під впливом високоенергетичного ультразвуку, які отримані за допомогою комплексу ультразвукових і радіометричних вимірювань, що забезпечує точність оперативного розпізнавання різновидів руди в процесі збагачення не менш 99,4%.

Розмір вкраплень корисного компонента на рудниках ГЗК

Назва підприємства	Варіація вкраплень, мм	Переважний розмір вкраплень, мм
Рудник ПАТ «АрселорМіттал Кривий Ріг»	0,010-0,20	0,07-0,08
Рудник ПАТ «Південний ГЗК»	0,001-0,30	0,06-0,07
Рудник ПАТ «Центральний ГЗК»	0,020-1,30	0,08-0,10
Першотравневий рудник ПАТ «Північний ГЗК»	0,007-0,50	0,01-0,20
Ганнівський рудник ПАТ «Північний ГЗК»	0,050-0,07	-
Рудник ПАТ «Коршунівський ГЗК»	0,001-0,40	0,03-0,10

Бастан П. П., Костина Н. К. Смешивание и сортировка руд. – М.: Недра, 1990. – 168 с.

Для найкращого розкриття корисного компонента необхідно отримати на виході технологічної лінії задану функцію розподілу корисного компонента в класах крупності і задану гранулометричну характеристику:

$$\left|\beta_{L}(d) - \beta_{L}^{*}(d)\right| \rightarrow \min \qquad \left\|\gamma_{L}(d) - \gamma_{L}^{*}(d)\right\| \rightarrow \min$$

Схема ланцюга апаратів технологічної лінії рудозбагачувальної фабрики

Технологічні агрегати збагачувального виробництва як об'єкти керування

Технологічна лінія як оператор F, що перетворює вектори вхідних змінних на вектори вихідних параметрів:

 $\overline{Y} = F(\overline{X}, \overline{U})$

Вихідні параметри окремих етапів технологічного процесу збагачення руди необхідно розглядати як вхідні для наступного етапу:

 $\overline{X_1} = F_1(\overline{X_0}, \overline{U_1}),$ $\overline{X_\ell} = F_\ell(\overline{X_\ell}, \overline{U_\ell}),$

$$\overline{Y} = \overline{X_L} = F_L \Big(\overline{X_{L-1}}, \overline{U_L} \Big).$$

Елементами векторів вихідних параметрів для подрібнювальних агрегатів є їхні якісні та кількісні показники:

- гранулометричний склад часток рудного матеріалу $\gamma(d)$;
- вміст корисного компонента у класах крупності $\beta(d)$;
- витрати електроенергії даного технологічного агрегату *X*.

$$\overline{X_{\ell}} = \{ \gamma_{\ell}(d), \beta_{\ell}(d), \chi_{\ell} \}, \ \ell = \overline{1, L}$$

Ідентифікація моделей нелінійних динамічних процесів збагачення на основі ядер Вольтерра

Ідентифікація моделей нелінійних динамічних процесів збагачення залізорудної сировини на основі структур Вольтерра-Лагерра

У дискретному часі базисна функція Лагерра визначається формулою:

$$\phi_{j}(i) = \sqrt{1 - \alpha^{2}} \left\{ \sum_{k=0}^{j-1} (-\alpha)^{k} {j-1 \choose k} {i+k-1 \choose k-1} \alpha^{i-j+k} U(i-j+k) \right\}$$

Вихід моделі Вольтерра-Лагерра представляють формулою:

$$\widetilde{\beta}^{d}(k) = \sum_{n=1}^{N} \sum_{j_{1}=1}^{r} \dots \sum_{j_{n}=1}^{r} \theta_{n}(j_{1}, \dots, j_{n}) \prod_{k=0}^{n} \sum_{i_{k}}^{m} l_{j_{k}}(i_{k}) \psi(k-i_{k}) \qquad \ell_{j}(k) = \sum_{i=1}^{\psi_{l}} \Phi_{j}(i) \psi(k-i)$$

Ядро $h_N(i_1, ..., i_N)$ порядку N, якщо воно є стабільно сепарабельним і строго власним, може бути розкладено у ряд Лагерра наступним чином:

$$h_{N}(i_{1},\ldots,i_{N}) = \sum_{j_{1}=1}^{\infty} \cdots \sum_{j_{N}=1}^{\infty} c_{N}(j_{1}\ldots,j_{N})\phi_{j1}(i_{1})\ldots\phi_{jN}(i_{N}) \quad c_{N}(j_{1}\ldots,j_{N}) = \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{N}=1}^{\infty} h_{N}(i_{1},\ldots,i_{N})\phi_{j1}(i_{1})\ldots\phi_{jN}(i_{N})$$

Інформаційний критерій Акайке (АІС) задається як :

$$AIC = K \log(SSE(\alpha, L)/K) + 2N_p$$

Результат ідентифікації моделі Вольтерра-Лагерра вмісту заліза в магнітному продукті

Підвищення точності моделі Вольтерра-Лагерра відносно моделі Вольтерра

Кількість ітерацій	Зменшення помилки (відсутність шумів), %	Зменшення помилки (наявність шумів), %
20	9,87	50,01
40	4,32	18,11
60	0,96	9,72
80	0,54	5,79
100	0,12	2,95

«••••» – дані експерименту; «——» – результат ідентифікації.

Формування критерію якості робастного керування об'єктами збагачувального виробництва

 $Y(s) = \left[I - G(s)K_{final}(s)\right]^{-1} * G(s)W_1(s)K_s(0)W_2(0)R(s)$

Перевірка робастной стійкості і робастної якості з використанням µ-синтезу на основі D-К ітерацій

Завдання оптимізації сформовано так, щоб мінімізувати верхню границю значень µ:

$$\min_{K} \min_{D_{\ell}(s)D_{r}(s)} \left\| D_{\ell}(s)F_{L}(P,K)D_{r}^{-1}(s) \right\|_{\infty}$$

Д

$$\mathbf{P}_{\ell}(\mathbf{s}) = \begin{bmatrix} d_1(s) & 0 & 0 & 0 \\ 0 & d_2(s) & 0 & 0 \\ 0 & 0 & d_3(s) & 0 \\ 0 & 0 & 0 & d_4(s)I_2 \end{bmatrix} \qquad \mathbf{D}_{\mathbf{r}}(\mathbf{s}) = \begin{bmatrix} d_1(s) & 0 & 0 & 0 \\ 0 & d_2(s) & 0 & 0 \\ 0 & 0 & d_3(s) & 0 \\ 0 & 0 & 0 & d_4(s) \end{bmatrix}$$

 $d_1(s), d_2(s), d_3(s), d_4(s)$ – масштабуючі передавальні функції.

Регулятор К повинен бути таким, щоб для кожної частоти виконувалася умова:

 $\mu\Delta_p[F_L(P,K)(j\omega)] < 1$

яка забезпечує виконання умови:

$$\left\| \begin{bmatrix} W_p(I + F_U(G_1, \Delta)K)^{-1} \\ W_u K(I + F_U(G_1, \Delta)K)^{-1} \end{bmatrix} \right\|_{\infty} < 1$$

Перевірка робастної стійкості і чутливості системи керування

Сімейство функцій чутливості замкнутої системи керування з регулятором К_µ: «——» — номінальне значення; «——» — обернена вагова функція Порівняльний аналіз показників якості керування робастних регуляторів синтезованих за допомогою методів Н∞-субоптимального управління, методу формування контуру і *µ* синтезу

Принципи формалізації керування лінією збагачення руди як динамічною системою з розподіленими параметрами

Загальна вихідна змінна технологічної лінії збагачення руди, як розподіленого об'єкта : $\beta^d(\ell,k) = \sum_{i=1}^n \beta_i^d(\ell,k)$ Сумарна розподілена функція розподілу вмісту корисного компонента по класах крупності описується виразом : $\beta^d(\ell,t) = \sum_{i=1}^n \Theta_i(\ell,t) * \psi_i(t)$

де $\Theta_i(\ell, t)$ – розподілена імпульсна функція системи.

Після застосування перетворення Лапласа, переходячи у область s, отримуємо відношення:

$$\beta_i^d(\ell, s) = \Xi_i(\ell, s)\psi_i(s), \quad i = \overline{1, n}$$
$$\beta^d(\ell, s) = \sum_{i=1}^n \Xi_i(\ell, s)\psi_i(s)$$
$$\beta_i^d(\ell_i, s) = \Xi_i(\ell_i, s)\psi_i(s), \quad i = \overline{1, n}$$

де $\Xi_i(\ell, s)$ — відповідні передавальні функції.

Система дворівневого координованого децентралізованого керування технологічною лінією збагачення

Глобальний критерій оптимізації керування технологічною лінією збагачення, як динамічним об'єктом з зосередженим входом і розподіленим виходом:

$$\begin{cases} Q\left(\overline{p}, \overline{\psi}, \overline{\beta}^{d}\right) \rightarrow \max;\\ \beta_{l} \leq \beta\left(\overline{p}, \overline{\psi}, \overline{\beta}^{d}\right) \leq \beta_{h}. \end{cases}$$

Формування моделі керування розподіленою системою технологічних агрегатів лінії збагачення руди

Завданням керування – формування такої послідовності керуючих входів $\bar{\mathbf{B}}^d$, яка в сталому стані, забезпечить мінімальну помилку керування при квадратичній нормі:

Блок часового формування ЧФ містить

одноканальних контурів керування

регулятори $\{K_i(z) | i = \overline{1, n}\}$ зосереджених

відповідно до

$$\|\varepsilon(\ell,\infty)\| = \|\mathbf{B}^d(\ell,\infty) - \beta^d(\ell,\infty)\| \to \min$$

У блоці формування просторового керування виконується рішення оптимізаційної задачі апроксимації:

$${}^{l}(\ell,\infty) - \sum_{i=1}^{n} \mathbf{B}_{i}^{d}(\ell_{i},\infty) \Omega H R_{i}(\ell,\infty) \to \min$$

 ${}^{l}(\ell,\infty) \to \min$
 ${}^{l}(\ell,\infty) = \overline{\mathbf{I},n}$ Відповідно до
вимоги мінімізації помилки керування в
сталому режимі.
 ${}^{\{\Omega H R_{i}(\ell,\infty)\}_{i}}$ ${}^{\{\Xi H_{i}(\ell_{i},z)\}_{i}}$
 ${}^{\mathbb{B}^{d}}(\ell,k)$ $\mathbb{D}_{poctopobe}$
формування $\mathbb{B}^{d}(\ell,k)$ $\mathbb{D}_{poctopobe}$

Структура системи керування розподіленим процесом збагачення руди

Розподілена по лінії збагачення залежність масової частки твердої фази у залізорудній пульпі від витрат води до технологічних агрегатів

Формування та оптимізація замкнутого контуру керування лінією збагачення руди як динамічною системою з розподіленими параметрами

У блоці ПЕСЗР формуються наведені розподілені вихідні величини: $\left\{ \left(eta^d R_i \right) (\ell,k) \right\}_{i=k}$

На k-му кроці у блоці ПФ-2 здійснюється апроксимація:

 $\left\|\beta^{d}(\ell,k) - \sum_{i=1}^{n} \beta_{i}^{d}(\ell_{i},k)\beta^{d}R_{i}(\ell,k)\right\| \to \min$

У блоці ПФ-1 обчислюються керуючі впливи :

 $\left\{ \mathbf{\breve{B}}_{i}^{d} \left(\ell_{i}, \infty \right) | i = \overline{1, n} \right\}$

На виході алгебраїчного блоку маємо:

$$\breve{\varepsilon}_{i}(\ell_{i},k) = \breve{\mathbf{B}}_{i}^{d}(\ell_{i},\infty) - \beta_{i}^{d}(\ell_{i},k)$$

Помилка керування $\{ \overline{\varepsilon}_i(\ell_i,k) | i = \overline{1,n} \}$ надходить на вхід блоку часового формування, а потім керуючі сигнали $\overline{\psi}(k) = \{ \psi_i(k) | i = \overline{1,n} \}$ надходять на вхід системи з зосередженими вхідними і розподіленим вихідним параметрами.

Моделювання якості керування робастних регуляторів

Розподілені сигнали завдання, збурення і розподілена керована змінна

D

Структура багатоканальних ультразвукових вимірювань основних характеристик продуктів збагачувального виробництва

Розподіл корисного компонента по класах крупності часток твердої фази пульпи на основі ультразвукових і радіометричних вимірювань

Сигнал S₁ визначає концентрацію твердої фази пульпи:

$$S_{1} = \ln(A_{0_{1}} / A_{v_{1}}) = \frac{Wz}{\aleph} \int_{0}^{r_{m}} \sigma(v_{1}, r) F(r) dr$$

Величина загасання гаммавипромінювання:

$$S_{\gamma} = \ln(I_{B} / I_{\Pi}) = AW[(\rho_{T} \mu_{T} - \rho_{B} \mu_{B})l]$$

Оцінка вмісту корисного компонента у певних класах крупності часток подрібненої руди: $S(I_h) = B \frac{S_{\gamma}}{S_1}$

В – коефіцієнт пропорційності;
S_γ – сигнал, який залежить від
концентрації та густини часток твердої
фази; S₁ – сигнал, пропорційний
концентрації твердої фази у пульпі.

Спектральна характеристика вхідного і перетвореного сигналу

Апробація методу ультразвукових і радіометричних вимірювань

Розробка методу визначення мінералого-технологічних різновидів руди в залізорудній пульпі

Густина конкретного типу руди при відомих значеннях масової частки мінералів розраховується за формулою :

$$\rho_{\rm cp} = \frac{\rho_{\rm \Pi} \rho_{\rm M} \beta_{\rm M}}{\rho_{\rm \Pi} \alpha + \rho_{\rm M} (\beta_{\rm M} - \alpha)}$$

де $\rho_{\rm M}$, $\rho_{\rm n}$ – густина мінералу і породи;

lpha – масова частка компонента у мінералі та руді.

Тип руди	Вміст в%					Густина,
	Кварц	Магнетит	Мартит	Гематит	Сидерит	кг/м³
1	63,7	30,9	0	1,4	3,8	3431
2	68,4	21,7	0	0,4	9,1	3248
3	64,5	30,2	0	1,5	3,8	3414
4	74,6	4,5	0	0,7	20,2	2989
5	60,8	31,4	0	5,4	2,5	3530

1 — магнетитові роговики; 2 — силікатно-карбонатно-магнетитові роговики; 3 — червоно-смугасті магнетитові і гематит-магнетитові роговики; 4 — силікатні сланці, безрудні роговики і кварци; 5 — гематитмагнетитові роговики.

Загальна структура розподіленої системи оптимального керування

Вибір і розрахунок основних компонентів системи ультразвукових і радіометричних вимірювань

Тиск ультразвукового поля:

$$p(r,\theta,t) = \frac{p_0 r_0}{r} \frac{\sin(\chi N)}{\sin(\chi)} e^{-j\chi(N-1)} e^{j(\omega t - kr)}, \chi = \frac{\omega \Delta \tau - kd \sin \theta}{2}$$

де *r* - нескінченно малий радіус пульсуючих точкових джерел ультразвукового випромінювання; *p*₀ - амплітуда тиску точкових джерел ультразвукового випромінювання; k - хвильове число; *ω* - кутова частота; *N* - кількість точкових джерел ультразвукового випромінювання; j - уявна одиниця.

Параметри ультразвукової фазованої решітки

Узагальнена блок-схема алгоритму керування процесом збагачення залізорудної сировини

Екран SCADA керування лінією збагачення руди

