

Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України

Харківський національний університет ім. В. Н. Каразіна

МІКРОХВИЛЬОВИЙ ВІДГУК МАТЕРІАЛЬНИХ СЕРЕДОВИЩ В ЕЛЕКТРОДИНАМІЧНИХ СТРУКТУРАХ, МЕТОДИ ТА РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ

Ю.О.АВЕРКОВ, О.А.БАРАННИК, О.І.ГУБІН, О.А.ЛАВРИНОВИЧ, Ю.В.ПРОКОПЕНКО, М.Т.ЧЕРПАК, В.О.ШКЛОВСЬКИЙ, В.М.ЯКОВЕНКО

> Висувається Інститутом радіофізики та електроніки ім. О. Я. Усикова НАН України

на здобуття Національної премії України ім. Бориса Патона у галузі науки і техніки у 2024 р.

Авторський колектив

П. І. Б.	Наукове звання, ступінь, посада	Установа
Аверков Юрій Олегович	с.н.с., д.фм.н., завідувач відділу	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Баранник Олександр Анатолійович	с.д., д.фм.н., старший науковий співробітник	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Губін Олексій Іванович	с.д., к.фм.н., старший науковий співробітник	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Лавринович Олександр Антонович	с.н.с., к.фм.н., старший науковий співробітник	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Прокопенко Юрій Володимирович	с.н.с., д.фм.н., провідний науковий співробітник	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Черпак Микола Тимофійович	проф., д.фм.н., головний науковий співробітник	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України
Шкловський Валерій Олександрович	проф., д.фм.н., в.о. завідувача кафедри	Харківський національний університет ім. В.Н. Каразіна МОН України
Яковенко Володимир Мефодійович	проф., д.фм.н., головний науковий співробітник, академік НАН України	Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України

Основні кількісні характеристики наукової роботи

Кількість публікацій за роботою										
фї	1									
гра	7									
ЮНС	серед них	:	Посібники	1						
M			Інші книжки (1						
•■	в журналах, в	255								
Тат	у т.ч.	115								
U	в журналах, в			3						
Тези	33									
Пото	5									
mare	нти на винахі,	4	Інші країни (С	2						
Зага	306									
Кількі	сть посилань	Web of Scienc	e .	2103	кс	26				
на пуб	блікації згідно	Scopus		2754	інде за ботч	29				
з базами даних:		Google Schola	ar	3530	h-i po	31				

3

Вступ

- 1. Взаємодія заряджених частинок, що рухаються, з твердотільними структурами.
- 2. Мікрохвильова електродинаміка квазіоптичних твердотільних резонаторів.
- 3. Мікрохвильовий поверхневий імпеданс і комплексна провідність нетрадиційних надпровідників. Нові підходи до експериментальних досліджень.
- 4. Надпровідні структури з електричним струмом у мікрохвильовому полі.
- 5. Ультратонкі плівки нормальних металів і графена у мікрохвильовому полі КДР.
- 6. Мікрохвильова діелектрометрія біохімічних рідин малих об'ємів.
- 7. Широкосмугове квантове (мазерне) підсилення у міліметровому діапазоні довжин хвиль. Ефект бістабільності у мазерному середовищі.
- 8. Нові радіофізичні прилади на основі досліджених середовищ і електродинамічних структур.

Висновки

Список публікацій

Вступ

Під матеріальними середовищами ми маємо на увазі середовища, які характеризуються комплексними коефіцієнтами в матеріальних рівняннях, а саме, провідністю, діелектричною і магнітною проникністю. Взаємодія матеріальних середовищ з електромагнітними (ЕМ) полями визначається цими коефіцієнтами. *Мікрохвильовий (МХ) діапазон полів включає орієнтовно частоти від 3.10⁸ Гц до 3.10¹¹ Гц. Він є надзвичайно важливим с точки зору широких можливостей вивчення фундаментальних фізичних властивостей середовищ та застосування результатів дослідження у багатьох галузях промисловості, сільського господарства і медицини. Актуальним залишається розвиток МХ техніки в галузях радіо-і телекомунікації, особливо, в системах оборонної техніки.*

Наведено отримані у роботі найважливіші результати теоретичних і експериментальних досліджень низки матеріальних середовищ та електродинамічних систем для вивчення цих середовищ.

Взаємодія заряджених частинок та їх потоків з твердотільними структурами

Рис. 1 – Збуджувальні циліндричні структури із:

- діелектрика;
- ➤ діелектрика+2D-газу;
- напівпровідника;
- ▶ напівпровідника+2D-газу;
- 2D-плазмової трубки

$$\frac{dW}{dt} = e \int_{-\infty-\infty}^{\infty} \int_{m=-\infty}^{\infty} \left\{ \left(v_z - \frac{nq_z v_{\varphi}}{\rho_0 q^2} \right) E_{zm}^e(\rho_0, q_z, \omega) - i \frac{\omega v_{\varphi}}{cq} H_{zm}^{e'}(\rho_0, q_z, \omega) + \frac{\Delta_{1m}}{\Delta_m} \left(v_z - \frac{mq_z v_{\varphi}}{\rho_0 q^2} \right) H_m(q\rho_0) - i \frac{\Delta_{2m}}{\Delta_m} \frac{\omega v_{\varphi}}{cq} H_m^{'}(q\rho_0) \right\} dq_z d\omega$$

Рис. 3 – Залежності величини максимуму спектральної щільності Q_{max} (сині криві) та енергії Фермі E_F (червоні криві) від 2D концентрації електронів n_0 для графену і напівпровідника.

З аналізу залежності $Q_{max}(n_0)$ можна встановити якісний характер закону дисперсії електронів у 2D плазмі: лінійний для моношару графена і квадратичний для напівпровідника.

Взаємодія заряджених частинок та їх потоків з твердотільними структурами

Рис. 4 – Передбачення ефекту абсолютної нестійкості пучка електронів, що рухається вздовж лівостороннього (диспергуючого) середовища циліндричної конфігурації.

Рис. 5 – Збудження об'ємно-поверхневих хвиль з негативною дисперсією в області частот, де $\varepsilon < 0$ і $\mu < 0$ при n = 0.

Рис. 6 – Передбачення ефекту абсолютної нестійкості пучка електронів, що рухається вздовж лівостороннього інтерфейсу. Збуджуються поверхневі хвилі ТМ-типу з негативною дисперсією.

Рис. 7 – Спектр збуджуваних хвиль.

Електродинаміка шаруватих твердотільних структур

відбиття

від

хвилі

кута

повної

Рис. 10 – Збудження поверхневих електромагнітних станів в антиферомагнітному фотонному кристалі з 2D-шаром у середині. Встановлення характеру закону дисперсії носіїв заряду в 2D шарі.

Електродинаміка КДР

Перетин резонаторних структур, що обмежені провідними площинами, з циліндричними (а) та сферичними (б) поверхнями

1,0 $\mathbf{E}_{z max}$ 0,5 Re 0,0 Re E_{zv} -0,5 -1,0 Cm

Рис. 12 – Розподіл E_{zy} компоненти НЕ₃₆₁₁ моди у КДР.

У разі великих значень $\varepsilon'_1 > \varepsilon'_2$ спостерігається добротності резонатора зростання V разі заповнення його внутрішнього шару речовинами з великими втратами (tg δ_1 > tg δ_2)

Техніка вимірювання МХ поверхневого імпедансу надпровідників

2R

б

 1. Плівки YBa2Cu3O7-σ

 2. Монокристал

 Ba(Fe0.926Co0.074)2As2

 3. Плівка FeSe1-xTex

 4. Монокристал

 (Li1-xFex)OHFeSe

 5. Плівка Nb

 6. Монокристал MgB2

Рис. 13 – Квазіоптичні діелектричні резонатори з локалізацією хвилі ШГ біля основи резонатора: у формі: а) півкулі, б) зрізаного конуса, в) з асферичною поверхнею. г) розподіл поля (Е_z-компонента)

 $\begin{array}{c}
 g(x)10^{-1} \\
 g(x)10^{-2} \\
 g(x)10^{-2} \\
 g(x)10^{-3} \\
 g(x)10^{-3} \\
 g(x)10^{-4} \\
 g(x)10^{-6} \\
 g(x)10^{-6}$

Рис. 16 – Температурна залежність флуктуаційної частини провідності $\Delta \sigma$

Техніка вимірювання МХ поверхневого імпедансу надпровідників

Техніка вимірювання МХ поверхневого імпедансу надпровідників

Надпровідні структури з електричним струмом у мікрохвильовому полі

13

MX Температурно залежне поглинання вихорами Y надпровідниках із потенціалом пінінгу (ПП) типу пральної дошки (ПД)

Рис. 27 – Приклади ПП ПД

Рис. 28 – Система координат ху з каналами ПП ПД, паралельними вектору у. Вектор $j = j_0 + j_1 \exp i\omega t$ спрямовано під кутом α відносно у. β – кут між векторами v і j. F_p-середня сила пінінгу, а F_L-сила Лоренца для вихору.

Рис. 29 – Частотні залежності дійсної (Re) та уявної (Іт) частин імпедансу змінного струму для потенціалу пінінга $U_p(x) = (U_p/2)(1 - \cos kx)$ при низці значень густини постійного струму j_0

Рис. 30 – Модифікація ефективного ПП $U_{i}(x) = U_{p}(x) - f_{0i}x$, де $U_{p}(x) = (U_{p}/2)(1 - \cos kx) \in \Pi\Pi$ ПД, зі збільшенням f_0 (0 = $f_0 < f_{01} < f_{02} < f_{03} = f_c$.

Нелінійна модуляція мікрохвильових втрат змінним струмом у флюксонному метаматеріалі

Рис. 31 – (а) Експеримент. геометрія. (b) Визначення частоти депінінгу f_d при -3 дБ є прикладом критерію для зразка із симетричними канавками (зразок S). Фітинг частотної характеристики ΔS_{21} показано суцільними лініями. Згортання фільтра –10 log10[$(f / f_d)^n$] зображені прямими з показниками п.

Рис. 32 – Вольт-амперні криві для зразків S (a) і A (b) при $T = 0,3T_c$ і H = 7,2 мТл відповідно. Амплітуди квазістатичного змінного струму, використані для представлення різних режимів модуляції на рис. 33, показано горизонтальними лініями.

14

Рис. 33 – Модуляція МХ втрат у мікросмужці А при H = 7,2 мТл, $T = 0,3T_c$ і потужності збудження P = -20 дБм. Адіабатичний змінний струм (3 Гц) у докритичному (а), близькокритичному (d) і надкритичному (g) режимах призводить до зниження частоти депінінгу [панелі (b), (e) і (h)), відповідно] та появі втрат на 3,02 ГГц через вихори $\Delta S_{21}(f = f_d(j = 0))$ [панелі (c), (f) та (i) відповідно].

Виявлення лавиноподібного переходу ВТНП мікрохвильової лінії передачі з нелінійним імпедансом в сильно дисипативний стан

Рис. 33 – Схема подачі постійного струму на КПХ (МПТ-мікрохвильовий планарний трійник; ДПС – джерело постійного струму).

Рис. 35 – Залежність постійного струму $I^*=I_{dc}$ відповідного лавиноподібному ефекту від потужності вхідного сигналу P_{in} для КПХ з різною товщиною плівки (75 та 150 нм).

Рис. 34 – Залежність внесених втрат *IL* від *T* при потужності вхідного сигналу $P_{in} = 832$ мВт та різних значеннях постійного струму I_{dc} (0; 70; 100 мА).

Рис. 36 – Залежність IL(T) від вхідної потужності $P_{in} = 832$ мВт: структура без поглинача та структура з поглиначем

15

Ĩ**₽**≋

Ультратонкі плівки нормальних металів і графена у мікрохвильовому полі КДР

Відгук КДР з плівкою міді. Ефекти переходу від мікрометрових до нанометрових товщин

Рис. 39 – (а) КДР, збуджений діелектричними хвилеводами: вхід і вихід, резонаторні структури, що складаються з сапфірового диска 1, кварцової підкладки 2 і графенової плівки 3. Тут (b) і (c) представляють сапфіровий диск і сапфіровий диск з кварцовою підкладкою без графена, (d) і (e) відображують ситуації, коли графен розташований у нижній і верхній частині кварцової підкладки відповідно

Плівка графену у мікрохвильовому полі КДР

 3.0×10^{-4}

 2.0×10^{-4}

 1.0×10^{-1}

Q-factor)

Frequency

(Q-factor)

Рис. 40 – Залежність коефіцієнта S₂₁ від частоти для моди НЕ_{14 1 б} в КДР з графеном

Рис. 41 – Виміряна частота $f_{\rho}(\circ)$ і Q-фактор $Q_{\rho}(\blacktriangle)$ КДР для конфігурації «графен зверху». Суцільні та штрихові лінії представляють чисельне моделювання залежності f_{ϱ} та Q від товщини плівки для провідності плівки і 1,02×107 См/м відповідно. Суцільна лінія $(1,02 \times 10^{6})$ См/м) відповідає експериментальним точкам. Крайня точка зліва f відповідає добротності резонатора з підкладкою без графену, мода НЕ_{14 1 8}

Рис. 42 — Частота резонатора $f_g(\circ)$ та обернена добротність Qg (**(**) з графеном у положенні «верх» як функція відстані а між площиною сапфірового диска та підкладкою, $\sigma =$ 1,02×106См/м. . Світлі кружечки та залиті трикутники - експеримент, а лінії – результати розрахунків.

Значення електропровідності, отримані за допомогою COMSOL Multiphysics для різних мод і положень підкладки

Мода	HE	121δ	ΕΗ _{11 1 δ}					
Положення	верх	низ	верх	НИЗ				
σ (S/m)	1,069×10 ⁶	9,57×10 ⁵	1,151×10 ⁶	9,89×10 ⁵				

Середнє значення $\sigma = (1,04\pm0,11) \times 10^6$ См/м

Мікрохвильова діелектрометрія біохімічних рідин малих об'ємів

Рис. 45 – Залежності комплексної діелектричної проникності амінокислот для концентрацій 131,7 18 ммоль/л у водних розчинах, від молярної маси, виміряних на частоті 35,668 ГГц

Квантове (мазерне) підсилення у мм діапазоні довжин хвиль з широкою (миттєвою) смугою підсилення. Ефект бістабільності у мазерному середовищі

Рис. 46 – Схема енергетичних рівнів у андалузиті. Трьохрівнева схема накачки при 90-градусній орієнтації кристалу по відношенню до напрямку зовнішнього магнітного поля; два магнітних комплекси іонів Fe³⁺ в андалузиті (вставка).

Рис. 47 – Поперечний переріз періодичної сповільнювальної структури: 1- активний кристал; 2- штирова гребінка; 3-тонка діелектрична пластина; 4- феритовий елемент; 5-діелектрик; 6 - екран сповільнювальної структури (корпус); та фото квантового підсилювача.

G = 20 - 30 дБ; $\Delta f = 470 - 240$ МГц; $T_{\mu\nu} \approx 20$ К; $P_{\mu} = 500 - 300$ мВт

Рис. 49 – Розширення лінії ЕПР в Al₂SiO₅ : Fe³⁺ в залежності від відстані w до гексаферитової пластинки.

l Rã

Рис. 50 – Незалежні гілки інверсійних станів спін-системі у квантовому підсилювачі. Стрілки 19 указують напрямок зміни потужності накачки.

1. Квазіоптичний діелектричний резонатор у складі комірок для вимірювання поверхневого імпедансу плівок

надпровідників у мм діапазоні хвиль

Рис. 51 – а) Комірка для прямого вимірювння *Rs* (1діелектрчний диск, 2-ВТНП плівка, 3-підкладка, 4-пінопластова обойма, 5-мідні диски, 6-дюралева каретка, 7-дзеркальні діелектрчні хвилеводи); б) фотографія нижньої частини хвилевідної вставки в кріостат у складі з напівсферичним сапфіровим КДР з однією ВТНП плівкою (в центрі фотографії).

2. Вимірювальний квазіоптичний діелектричний резонатор з використанням відбитої хвилі

Рис. 52 – а) Вимірювальний резонатор з ШГ; 1 – діелектричне тіло обертання (резонатор), 2 і 3 – торцеві пластини з високою провідністю (2 може бути досліджуваною плівкою), 4 – отвори зв'язку, 5 – коаксіальний хвилевід, 9 – штифт, 10 – компартмент; б) поперечний переріз коаксіального хвилевода.

Рис. 53 – Спектр коефіцієнту відбиття двох резонаторів з високо- та низькопровідними торцевими пластинами із 4-ма та 8-ма отворами зв'язку

Патент №110214, Україна, Опубл. 10.12.2015, Бюл. №23; Patent US 9,588,061 B2, March 7, 2017

3

pe30-

- Частотний

спектр мікросмужкового

натора, результат обчи-

слення і експеримент

Рис. 55

квазіоптичного

3. Мікросмужковий квазіоптичний резонатор

metal disc

Рис. 54 – Вид збоку мікросмужкового квазіоптичного резонатора (а) і розподіл МХ поля у підкладинці (діелектрик) під металевим диском (б).

metal

substrate

Рис. 56 – Фото експериментального прототипу пристрою з 2 квазіоптичними мікросмужковими резонаторами та 2 мікросмужковими лініями.

 $H_{71\delta}$

0.08

0,06 S

0.04

Mag.

a=0.031 (measurement)

 $H_{91\delta}$

a=0.040 (simulation)

H_{81δ}

Рис. 57 – Температурна залежність мікрохвильового відгуку мікросмужкового КДР на основі надпровідної плівки $DyBa_2Cu_30_{7-\delta}$ (а) і приклади запису резонансної лінії резонатора при двох значеннях температури, S_{31} – коефіцієнт передачі вхід-вихід резонатора (б). 21

Патент на винахід №89076, Україна. Опубл.25.12.2009

4. Смуго-пропускний ВТНП фільтр

Рис. 58 – Загальнии вигляд см пропускного фільтра

Рис. 60 – переріз смуго-пропускного фільтра в осьовій площині хвилеводу

Рис. 59 – Переріз смуго-пропускного фільтра в поперечній площині хвилеводу

1-хвилевід прякутного перетину *a* х *b*, 2- діелектрична підкладка, 3-ВТНП плівка, 4- резонансне вікно, 5- канавка, 6- металевий корпус, 7-теплопровідний шар.

Рис. 61 – Розподіл поверхневих МХ струмів в стінках хвилеводу і ВТНП шарах для Е-площинних ВТНП вставок в прямокутному (а) і хрестоподібному (б) хвилеводах **??**

Патент на винахід №109490. Україна Опубл. 25.08.2015,Бюл. №16; Раtент US 2015/01882089 A1, Jul. 2, 2015.

23

5. Макет діелектрометра з КДР у складі з мікрофлюїдним чіпом.

Рис. 62 – Макет діелектрометра у складі вимірювальної комірки у термоізольованому боксі, температурного контролера та векторного аналізатора мереж (а) та скріншот програми для вимірювання (б).

	Liquid filling	1	Conc	flig (Hz)	Qlia	S21 (dB)	Tlia	fwater (Hz)	Qwater	S21 (dB)	Twater	Deltaf (Hz)	Delta(1/Q)	Eps1	Eps2	^	Data Folder	
U	L-Lysine		197.0	53003404003	SUDILI	-59.207	+20.000	500002/44/5	272911	-59.499	+23.002	150412	0.0191006-00	20.954	20.001		f:/Data/WGM/202	20/02_12_2
1	L-Lysine		197.5	39345484178	5599.1	-45.672	+24.999	39345398382	5420.5	-45.948	+24.999	85796	5.885869e-06	21.345	29.261		T Av Et	Cal
2	L-Lysine		296.3	31991735460	2065.3	-36.229	+25.006	31991446786	1985.1	-36.587	+25.000	288674	1.957198e-05	19.499	26.967			Cui
3	L-Lysine		296.3	35665468327	3710.9	-39.134	+25.009	35665271162	3539.0	-39.499	+25.008	197165	1.309103e-05	20.324	28.049		Multi Frequen	icy Mode
4	L-Lysine		296.3	39345527786	5685.0	-45.532	+25.003	39345395980	5421.0	-45.943	+24.993	131806	8.567335e-06	20.921	28.809		31.990	33.
5	L-Lysine		444.4	31991869777	2109.0	-36.040	+24.998	31991440981	1985.6	-36.575	+24.996	428796	2.947506e-05	18.261	25.319		35.665	37.
6	L-Lysine		444.4	35665562972	3806.3	-38.937	+24.995	35665270516	3543.2	-39.490	+24.998	292456	1.951003e-05	19.464	26.977		39.345	
7	L-Lysine		444.4	39345588790	5832.9	-45.313	+25.009	39345395248	5419.8	-45.940	+25.007	193542	1.306840e-05	20.358	28.053		Test Substance	e Measuren
8	L-Lysine		666.7	31992060504	2177.6	-35.771	+25.011	31991437685	1984.8	-36.577	+25.003	622819	4.459558e-05	16.606	22.825		Substance	Lysine
9	L-Lysine		666.7	35665687695	3948.6	-38.657	+25.001	35665271578	3543.1	-39.495	+24.997	416117	2.898122e-05	18.373	25.402		Concentration	131
D	L-Lysine		666.7	39345512219	6047.3	-44.074	+24.999	39345390803	5420.7	-45.945	+24.992	121416	1.911515e-05	21.038	27.068			
1	L-Lysine		1000	31992330910	2280.3	-35.360	+24.995	31991441903	1987.7	-36.579	+24.986	889007	6.454348e-05	14.365	19.549		Reset	Meas
2	L-Lysine		1000	35665872264	4174.8	-38.219	+25.000	35665271332	3543.0	-39.494	+25.000	600932	4.271412e-05	16.788	23.133		Reference Me	asurement
3	L-Lysine		1000	39345790278	6424.6	-44.514	+25.001	39345393704	5423.3	-45.943	+25.000	396574	2.873627e-05	18.550	25,447		Substance	water
4	L-Lysine		131.7	31991563620	2019.1	-36.431	+25.008	31991437531	1983.2	-36.586	+25.003	126089	8.959851e-06	20.975	28.745			
5	L-Lysine		131.7	35665355934	3613.2	-39.341	+24.998	35665262528	3538.7	- 39,508	+24,998	93406	5.826647e-06	21,274	29.271			Meas
6	I-lysine		131.7	39345447590	5529.7	-45.772	+25.002	39345386571	5416.2	-45.955	+24.991	61019	3.788211e-06	21.574	29.613			
-																×	New file	
	Resonant	frequenc	y shift	7e-05	Cha	inges in	inverse (quality factor			Real p	oart of permi	ttivity		I	nagina	ry part of per	mittivity
				• 6e-05					•	22 -				30				
00	000			5e-05							•			28		11	•	
00	000 -	•		• 4e-05				•	•	20 -	•	• •		26		•	• •	
				3e-05						18 -		• •	•	-	ή		• •	
90		•		20.05						-				24	•			
00	000	· ·		10-05	.		•	-		16				23	2			
					_ 	•••								20	, -			
	0 200 40	0 600	800	1000	L	200	100 60	0 900 10		14	200	400 600	800 1000	-	<u>ц</u>	200	400 600	800

б)

!?≈

6. Генерування електромагнітного випромінювання в електродинамічній системі на основі циліндричних КДР

Узагальнюючі висновки наукової роботи

Результати теоретичних та експериментальних досліджень низки матеріальних середовищ (твердотільна плазма, надпровідники, метаматеріали (у тому числі флюксонні), графени, біохімічні рідини, мазерні кристали, навколишнє середовище), проведених на основі єдиного методологічного підходу з використанням МХ відгуку зазначених середовищ в електродинамічних структурах, розширяють і дають нові знання про ці середовища.

Створені нові розділи в МХ фізиці: 1) електродинаміка взаємодії потоків заряджених частинок з ЕМ полями коливань та хвиль, які вони збуджують в твердотільних структурах, 2) електродинаміка високодобротних твердотільних резонаторів, 3) фізика флюксонних метаматеріалів.

Отримали розвиток експериментальні методи дослідження МХ відгуку середовищ на основі нових електродинамічних структур (КДР з різною формою поверхні тіла обертання, нерезонансний метод з відбиттям плоскої хвилі при ковзних кутах падіння, КДР діелектрометрія біохімічних рідин малих об'ємів (<1мкл)).

Виявлено нові особливості та ефекти при взаємодії МХ поля з конденсованими середовищами (частотна залежність залишкового поверхневого опору купратного надпровідника, аномальна температурна залежність дійсної частини комплексної провідності нетрадиційних надпровідників типу пніктидів та халькогенідів з іонами Fe, лавиноподібний перехід МХ копланарної лінії передачі на основі ВТНП с постійним струмом в сильнодисипативний стан, бістабільність в мазерній системі, автоколивання в структурі КДР з електронними пучками).

Отримані результати уже на сьогодні стали науковим підґрунтям для створення нових мікрохвильових приладів.

Автори також впевнені, що проведені дослідження не тільки дають нові знання, але в певних напрямках виявляють нові проблеми, які можуть стати важливими або навіть вирішальними у майбутньому розвитку як МХ фізики, так і багатьох інших галузей знань і техніки, включаючи комунікацію, оборону, біотехнології, медицину і можливі нові платформи для реалізації квантових обчислень.