

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ ПРОБЛЕМ МАТЕРІАЛОЗНАВСТВА ім. І. М. ФРАНЦЕВИЧА

ФАЗОВІ РІВНОВАГИ У СИСТЕМАХ $La_2O_3 - Y_2O_3 - Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb

на здобуття щорічної премії Президента України для молодих вчених

ЧУДІНОВИЧ Ольга Василівна – кандидат хімічних наук, науковий співробітник

Київ 2020

Ізотропна Nd:YAG кераміка

Метою роботи є побудова діаграм стану трикомпонентних систем $La_2O_3-Y_2O_3-Ln_2O_3$, де Ln = Nd, Sm, Eu, Gd, Yb, при 1500 і 1600 °C, де відбувається упорядкування/розупорядкування проміжної фази в усьому інтервалі концентрацій для створення фізико-хімічних основ розробки нових керамічних матеріалів функціонального призначення.

Об'єкт дослідження. Взаємодія фаз у подвійних і потрійних системах на основі оксидів лантану, ітрію та лантаноїдів.

Предмет дослідження. Фазові рівноваги у подвійних La_2O_3 -Yb₂O₃, Nd₂O₃-Y₂O₃ і потрійних La_2O_3 -Y₂O₃-Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) системах після випалу при 1100, 1500, 1600 °C.

Методи дослідження

Рентгенофазовий аналіз

Растрова електронна мікроскопія

Локальний рентгеноспектральний аналіз (ЛРСА)

Петрографія

Діаграма стану системи La₂O₃-Yb₂O₃

Діаграма стану системи Nd₂O₃-Y₂O₃ в інтервалі температур 1500-1600 °C

Концентраційні залежності параметра *а* елементарної комірки твердих розчинів на основі С-Y₂O₃ в системі Nd₂O₃−Y₂O₃ при 1500 і 1600 ^QC

Концентраційні залежності параметра *с* елементарної комірки твердих розчинів на основі B-Nd₂O₃ в системі Nd₂O₃-Y₂O₃ при 1500 і 1600 ⁰С

6

Ізотермічні перерізи діаграми стану системи La₂O₃–Y₂O₃–Nd₂O₃ при 1500 та 1600 °С

PROTON-21

Ізотермічні перерізи діаграми стану системи La₂O₃–Y₂O₃–Eu₂O₃ при 1500 та 1600 °C

Ізотермічні перерізи діаграми стану системи La₂O₃–Y₂O₃–Gd₂O₃ при 1500 та 1600 °C

Ізотермічний переріз діаграми стану системи La₂O₃–Y₂O₃–Yb₂O₃ при температурі 1500 °C

Діаграми стану систем Y_2O_3 –Ln₂O₃ (Ln = La, Nd, Sm, Eu, Gd)

Температури перетворення фази типу перовскиту АВО3 для різних РЗЕ Α B Y Но Er Tm Yb Lu 1600 La 1700 1820 1955 2040 1700 1900 2050 Ce Pr 1500 1950 1300 Nd

Умова стабільності R-фази по Гольдшміту 0,75 < t < 1,00

$$\boldsymbol{t} = (\boldsymbol{R}_A + \boldsymbol{R}_O) / \sqrt{2} (\boldsymbol{R}_B + \boldsymbol{R}_O)$$

Температура перетворення (T_{np}) фази типу перовскиту LaLnO₃ (Ln = Y, Ho, Er, Tm, Yb) від фактора толерантності *t* за Гольдшмідтом

13

Залежність температури перетворення фази LaLnO₃ від концентрації добавки РЗЕ у вузлі A (1), у вузлах A і B (2), у вузлі B (3) у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Er, Yb)

Ізотермічні перерізи діаграм стану систем $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd, Er, Yb) при 1500 °C

ВИСНОВКИ

1. Вивчено фазові рівноваги у подвійній системі La_2O_3 -Yb₂O₃ при 1100, 1500 та 1600 °C у всьому інтервалі концентрацій. Встановлено, що для даної системи характерно утворення твердих розчинів на основі A і C кристалічних модифікацій вихідних компонентів та впорядкованої фази із структурою типу перовскиту (LaYbO₃, R). Визначено границі областей гомогенності, що становлять: для C-фази – 98–100 мол. % Yb₂O₃ (1100–1600 °C), R-фази – 48–56 мол. % Yb₂O₃ (1100, 1500 °C), 48–54 мол. % Yb₂O₃ (1600 °C), A-фази – 4 мол. % Yb₂O₃ (1100 °C) та 9 мол. % Yb₂O₃ (1500, 1600 °C).

2. Уточнено границі фазових полів у подвійній системі $Nd_2O_3-Y_2O_3$ при 1500 та 1600 °С для твердих розчинів на основі гексагональної (А), моноклінної (В) модифікацій оксиду неодиму та кубічної (С) модифікації оксиду ітрію, що становлять: для A-Nd₂O₃ 0–4 мол. % Y_2O_3 при 1500 і 1600 °C, B-Nd₂O₃ — 20–45 мол. % Y_2O_3 при 1500 °C і 21–50 мол. % Y_2O_3 при 1600 °C та C- Y_2O_3 — 28 мол. % Y_2O_3 при 1500 °C і 30 мол. % Y_2O_3 при 1600 °C. 3. Вперше вивчені фазові рівноваги у потрійних системах La₂O₃–Y₂O₃–Ln₂O₃ (Ln = Nd, Sm, Eu, Gd, Yb) при 1500 та 1600 °C у всьому інтервалі концентрацій і побудовано відповідні ізотермічні перерізи. Встановлено, що у вказаних системах утворюються тверді розчини на основі кубічної, гексагональної та моноклінної кристалічних модифікацій вихідних компонентів та впорядкованих фаз із структурою типу перовскиту (LaYO₃, LaYbO₃).

4. Встановлено закономірності утворення твердих розчинів С-типу оксидів РЗЕ у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ (Ln = Nd, Sm, Eu, Gd) при 1500 та 1600 °C: розчинність Ln_2O_3 у твердих розчинах на основі C-Y₂O₃(Yb₂O₃) зі зменшенням іонного радіуса Ln^{3+} збільшується.

5. Вперше встановлено закономірності утворення твердих розчинів на основі упорядкованої фази типу перовскиту (R). Показано, що область гомогенності R-фази у потрійних системах $La_2O_3-Y_2O_3-Ln_2O_3$ по ряду від Nd_2O_3 до Gd_2O_3 зменшується від 7 до 2 мол. % Ln₂O₃ тоді, як у системі з Yb₂O₃ утворюється неперервний ряд твердих розчинів на основі упорядкованої фази типу перовскиту, що обумовлено термодинамічною стабільністю фази LaYbO3 у подвійній системі La2O3-Yb2O3 (2040 °С). З використанням фактора толерантності за Гольдшмідтом проведено оцінку термічної стійкості твердих розчинів на основі фази LaLnO₃ в широкому інтервалі температур і концентрацій для іонів різного розміру. Показано, що утворення твердих розчинів відбувається за механізмом ізовалентного заміщення, а стійкість упорядкованих фаз і твердих розчинів визначається геометричним фактором: великі іони Nd³⁺ заміщують La³⁺, менші іони РЗЕ церієвого ряду Sm³⁺, Eu³⁺, Gd³⁺ заміщують Y³⁺ і La³⁺, тоді як іони РЗЕ ітрієвого ряду заміщують виключно Y³⁺, що відповідає експериментальним даним.

Дякую за увагу